

LEY DE EXPONENTES - TEORÍA DE EXPONENTES

"Entrenando la mente con números"

Nivel Básico

 Miguel avanza el doble de su paso anterior. Si en el primer paso avanza 1 metro, ¿cuánto avanzará en el cuarto paso? Rspta.: 8

$$a_4 = 1 * 2^{4-1} = 1 * 2^3 = 1 * 8 = 8$$
 metros

- 2. En una competencia, los puntos se duplican cada ronda. Si Ana empezó con 3 puntos, ¿cuántos tiene en la tercera ronda? **Rspta.: 12**
- Una bacteria se reproduce duplicándose cada hora. ¿Cuántas hay después de 5 horas, si comenzó con 1?
 Rspta.: 32
- 4. Una tienda aplica un 50% de descuento durante dos días consecutivos. Si el precio original es S/ 100, ¿cuál es el precio final? **Rspta.: 25**
- Una computadora realiza 10³ cálculos por segundo. ¿Cuántos cálculos realiza en un segundo?
 Rspta.: 1000

Nivel Avanzado

- 11. Simplifica la expresión $x^4 \cdot x^3$. Rspta.: x^7
- **12.** Reduce la expresión $\frac{y^6}{y^2}$. Rspta.: y^4
- 13. Si $a^3 \cdot (a^2)^4 = a^n$, ¿cuánto vale n^2 Rspta.: 11
- **14.** Simplifica la expresión $\left(\frac{x^2}{x^5}\right)^3$. Rspta.: x^{-9}
- **15.** Reduce la expresión $(2x^3)^2 \cdot x^{-1}$. Rspta.: $4x^5$

Nivel Intermedio

6. Una máquina entrega una potencia de 3^4 watts. ¿Cuántos watts entrega?

Rspta.: 81

7. Una impresora 3D crea objetos con 2^6 capas. ¿Cuántas capas son?

Rspta.: 64

8. En un videojuego, la energía se calcula con $2^3 \cdot 2^2$. ¿Cuál es la energía total?

Rspta.: 32

9. Una sustancia reduce su intensidad según $10^5/10^2$. ¿Cuál es la intensidad final relativa?

Rspta.: 1000

10. En una simulación, la fórmula es $(5^2)^3$. ¿Cuál es el resultado?

Rspta.: 15625

Ejercicios Resueltos

Leyes de Exponentes

Resolver: $\frac{5^2.2^3}{10^2}$

Solución:

$$\frac{5^2 \cdot 2^3}{(5 \cdot 2)^2} = \frac{5^2 \cdot 2^3}{5^2 \cdot 2^2} = 5^0 \cdot 2^1 = 1 \cdot 2 = 2$$

Explicación:

- Descomponemos el 10 en sus factores 5 y 2.
- · Distribuimos el exponente 2 entre ambos factores.
- En una división, bases iguales exponentes se restan.

Leves de Exponentes

Resolver: $(\frac{2}{3} + (\frac{3}{8})^{-1})^{(\frac{1}{9} - 3^{-2})}$

Solución:

$$(\frac{2}{3} + \frac{8}{3})^{(\frac{1}{9} - (\frac{1}{3})^2)} = (\frac{10}{3})^{(\frac{1}{9} - \frac{1}{9})} = (\frac{10}{3})^0 = 1$$

Explicación:

- Operamos las potencias elevadas a un número negativo.
- En la potencia, elevamos al cuadrado ambos términos.
 1 elevado al cuadrado es 1, 3 elevado al cuadrado es 9.
- · La resta en el exponente resulta 0
- Por teoría, cualquier número elevado a 0 (excepto el mismo 0) es 1.

Leyes de Exponentes

Resolver: $\frac{(\sqrt[3]{a^6})^b}{a^b}$

Solución:

$$\frac{(a^{\frac{6}{3}})^b}{a^b} = \frac{(a^2)^b}{a^b} = \frac{a^{2b}}{a^b} = a^b$$

Explicación:

- · La raíz cúbica pasa a dividir al exponente 6.
- Como la potencia (a²) está dentro de paréntesis, se multiplica los exponentes 2 y "b".
- En una división, bases iguales exponentes se restan.

Leves de Exponentes

Resolver:
$$\frac{10.3^a}{3^{a+2}+3^a}$$

Solución

$$\frac{10^2 \cdot 3^a}{3^a \cdot 3^2 + 3^a} = \frac{10^2 \cdot 3^a}{3^a \cdot (3^2 + 1)} = \frac{10^2 \cdot 3^a}{3^a \cdot 10} =$$
$$= 10 \cdot 3^0 = 10 \cdot 1 = 10$$

Explicación:

- En una multiplicación, bases iguales exponentes se suman. Al realizar la inversa de esta operación nos queda 3 elevado a la "a" y 3 elevado al cuadrado.
- Factorizamos el término que se repite (3^a) y resolvemos lo que queda dentro del paréntesis.
- En una división, bases iguales exponentes se restan.